

## **Performance Score Sheet**

Team Name:..... Primary/Secondary

Assessors Name:.....

| Category      | Examples of how high marks <u>may</u> be achieved are:                                                                                                     | Mark |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Entertainment | Non-repetitive robot movements and/or a varied robot performance                                                                                           | /8   |
| value         | • There is a link, or common theme demonstrated by the whole                                                                                               |      |
|               | performance                                                                                                                                                |      |
|               | • A digital display that integrates and/or complements the performance                                                                                     |      |
|               | • A performance that is engaging throughout.                                                                                                               |      |
|               | Ambitious use of the stage area                                                                                                                            |      |
|               | <ul> <li>Robot movement(s) are choreographed tightly to the music</li> </ul>                                                                               |      |
|               | Only robots and two performers are allowed on stage.                                                                                                       |      |
|               | No props or scenery are allowed on the stage                                                                                                               |      |
| Innovation &  | Robots are home-built not kits                                                                                                                             | /8   |
| Originality   | • Technologies are used in new or different ways that have not seen before.                                                                                |      |
|               | <ul> <li>Unusual technologies are used – for example unusual mechanical,</li> </ul>                                                                        |      |
|               | electronic or power systems.                                                                                                                               |      |
| Quality of    | Reliable robots that do not fall apart and work as expected for the                                                                                        | /8   |
| Display       | duration of the performance.                                                                                                                               |      |
|               | Home-built robot costumes that complement the performance and are                                                                                          |      |
|               | engaging.                                                                                                                                                  |      |
|               | • A slick and polished performance throughout the display.                                                                                                 |      |
| Technical     | Robot movement around the whole stage area,                                                                                                                | /8   |
| Complexity    | <ul> <li>Synchronization and/or communication between robots,</li> </ul>                                                                                   |      |
|               | Risky movements by robots                                                                                                                                  |      |
|               | <ul> <li>Interaction between digital display and the robots</li> </ul>                                                                                     |      |
| Sensor &      | <ul> <li>Sensors that "add value" to the performance</li> </ul>                                                                                            | /8   |
| Interactions  | <ul> <li>Sensors are used in 'original' or different ways</li> </ul>                                                                                       |      |
|               | Communication between robots to develop the performance                                                                                                    |      |
|               | Human-robot interaction (not remote control)                                                                                                               |      |
|               | Robot-robot interaction                                                                                                                                    |      |
|               | Use of coloured markers (Secondary only)                                                                                                                   |      |
|               | Primary: The use of line tracking robots on mats will NOT be rewarded highly.                                                                              |      |
|               | Secondary: No lines or mats are allowed on the stage                                                                                                       |      |
| Doductions    | <ul> <li>Each unplanned human intervention: 2</li> </ul>                                                                                                   |      |
| Deductions    | Bostarts: 2 for each re-start                                                                                                                              |      |
|               | Alletted time: 2 for each 10 seconds over                                                                                                                  |      |
|               | <ul> <li>Mithin area: 2 for each infraction of the boundary.</li> </ul>                                                                                    |      |
|               | <ul> <li>writing area5 for each infraction of the boundary</li> <li>Teams that infringe the rules should be warned that such infringements will</li> </ul> |      |
|               | not be allowed in the second performance and marks deducted                                                                                                |      |
|               | appropriately at the judge's discretion.                                                                                                                   |      |
| Total Score   |                                                                                                                                                            | /40  |



### **Technical Interview Score Sheet**

| Team Name:      | Country: | Primary/Secondary |
|-----------------|----------|-------------------|
| Assessors Name: |          |                   |

# Teams must bring copies of their programs and details of mechanical and electrical hardware to the interview; otherwise, these categories cannot be assess

| Category          | Examples of how high marks <u>may</u> be achieved are:                      | Mark |
|-------------------|-----------------------------------------------------------------------------|------|
| Programming       | Using an age appropriate programming languages                              | /8   |
|                   | • Being able to explain how the program works and interactions between the  |      |
|                   | hardware and software                                                       |      |
|                   | Creating innovative programming solutions                                   |      |
|                   | Developing libraries                                                        |      |
|                   | Explain decisions made and any limitations of the software                  |      |
| Mechanical        | Implementing reliable mechanical systems                                    | /8   |
| Hardware          | Complex/innovative mechanical systems                                       |      |
|                   | Being able to explain how the mechanical systems work                       |      |
|                   | • Mechanisms that have been developed for very high precision, or for       |      |
|                   | mechanically 'difficult' situations                                         |      |
|                   | • Appropriate actuators have been used, and there is an understanding of    |      |
|                   | why they have been chosen.                                                  |      |
| Electronic        | Electronics have been developed/home built (as age appropriate)             | /8   |
| Hardware          | An understanding of how the electronics works                               |      |
|                   | <ul> <li>Innovative use of sensors/integration of sensors</li> </ul>        |      |
|                   | Innovative use of technologies to aid performance (e.g., cameras, speed     |      |
|                   | controllers/motor controllers, GPS, different micro-controllers etc.)       |      |
|                   | Explain decisions made and any limitations of the electronics               |      |
| Robotic           | Use of effective robotic communication                                      | /6   |
| Communication     | An understanding of how the communication is occurring                      |      |
| & Interaction     | Development of communication architectures                                  |      |
|                   | • Sensors are used to achieve robot-robot interaction, for example robots   |      |
|                   | following robots                                                            |      |
|                   | Sensors are used to achieve robot-human interaction                         |      |
|                   |                                                                             |      |
| Deductions        | • Judges should satisfy themselves that this is the work of the students.   |      |
| (at discretion of | Originality of robot software and hardware (no re-use from previous         |      |
| Judges – up to 15 | competitions)                                                               |      |
| marks edulij      | • All team members are able to discuss their technical involvement with the |      |
|                   | robot                                                                       |      |
| Total Score       |                                                                             | /30  |





### **Open Technical Demonstration Score Sheet**

Team Name:..... Primary/Secondary

#### The aims of the Open Technical Demonstration are to:

- Demonstrate the capabilities of the robot(s)
- Explain the robot system and key capabilities
- Demonstrate fully working robot systems which work as described
- Focus on the key, innovative and original capabilities of the robot(s) developed
- Effectively communicates the technical capabilities of the robot to the audience with a high quality demonstration

#### Examples of areas on which the demonstration and explanation could cover include:

- Demonstration and explanation of a working mechanism which is complex, effective, overcomes a particular challenge or addresses reliability and stability
- Demonstration of successful robot-robot or robot-human interactions(e.g. through sensors or communication protocols)
- Successful implementation of a software algorithm
- A specific sub-system which is original and innovative
- Any interesting drive mechanisms and how these are controlled
- Choice of sensors and what the sensors are used to detect or interact with. Explanation of algorithms used for sensing.
- Any signal progressing of sensor data which is used (e.g. analogue/digital/frequency domain)
- Explanation of software architecture developed
- Integration of entire system (electronics, software, electronics, mechanics)
- Any communication mechanisms used to ensure efficient and reliable communication between robots
- The biggest challenges/problem which have been overcome, e.g. sourcing enough power, reliability, interactivity
- Any feedback loops used (e.g. using sensor feedback)

| Category                                                                | Mark |
|-------------------------------------------------------------------------|------|
| Demonstration of robots' technical capabilities which are fully-working | /15  |
| Explanation of robots' capabilities                                     | /10  |
| Clarity and quality of the demonstration                                | /5   |
|                                                                         |      |
| Deductions                                                              |      |
| Total Score                                                             | /30  |

Award Recommendations: